1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//! Support for symbolication using the `gimli` crate on crates.io
//!
//! This implementation is largely a work in progress and is off by default for
//! all platforms, but it's hoped to be developed over time! Long-term this is
//! intended to wholesale replace the `libbacktrace.rs` implementation.

use self::gimli::read::EndianSlice;
use self::gimli::LittleEndian as Endian;
use self::mmap::Mmap;
use self::stash::Stash;
use crate::symbolize::ResolveWhat;
use crate::types::BytesOrWideString;
use crate::SymbolName;
use addr2line::gimli;
use core::convert::TryInto;
use core::mem;
use core::u32;
use libc::c_void;
use std::ffi::OsString;
use std::fs::File;
use std::path::Path;
use std::prelude::v1::*;

#[cfg(windows)]
#[path = "gimli/mmap_windows.rs"]
mod mmap;
#[cfg(unix)]
#[path = "gimli/mmap_unix.rs"]
mod mmap;
mod stash;

const MAPPINGS_CACHE_SIZE: usize = 4;

struct Context<'a> {
    dwarf: addr2line::Context<EndianSlice<'a, Endian>>,
    object: Object<'a>,
}

struct Mapping {
    // 'static lifetime is a lie to hack around lack of support for self-referential structs.
    cx: Context<'static>,
    _map: Mmap,
    _stash: Stash,
}

fn cx<'data>(stash: &'data Stash, object: Object<'data>) -> Option<Context<'data>> {
    fn load_section<'data, S>(stash: &'data Stash, obj: &Object<'data>) -> S
    where
        S: gimli::Section<gimli::EndianSlice<'data, Endian>>,
    {
        let data = obj.section(stash, S::section_name()).unwrap_or(&[]);
        S::from(EndianSlice::new(data, Endian))
    }

    let dwarf = addr2line::Context::from_sections(
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        load_section(stash, &object),
        gimli::EndianSlice::new(&[], Endian),
    )
    .ok()?;
    Some(Context { dwarf, object })
}

macro_rules! mk {
    (Mapping { $map:expr, $inner:expr, $stash:expr }) => {{
        use crate::symbolize::gimli::{Context, Mapping, Mmap};

        fn assert_lifetimes<'a>(_: &'a Mmap, _: &Context<'a>, _: &'a Stash) {}
        assert_lifetimes(&$map, &$inner, &$stash);
        Mapping {
            // Convert to 'static lifetimes since the symbols should
            // only borrow `map` and `stash` and we're preserving them below.
            cx: unsafe { core::mem::transmute::<Context<'_>, Context<'static>>($inner) },
            _map: $map,
            _stash: $stash,
        }
    }};
}

fn mmap(path: &Path) -> Option<Mmap> {
    let file = File::open(path).ok()?;
    let len = file.metadata().ok()?.len().try_into().ok()?;
    unsafe { Mmap::map(&file, len) }
}

cfg_if::cfg_if! {
    if #[cfg(windows)] {
        use core::mem::MaybeUninit;
        use crate::windows::*;
        use std::os::windows::prelude::*;

        mod coff;
        use self::coff::Object;

        // For loading native libraries on Windows, see some discussion on
        // rust-lang/rust#71060 for the various strategies here.
        fn native_libraries() -> Vec<Library> {
            let mut ret = Vec::new();
            unsafe { add_loaded_images(&mut ret); }
            return ret;
        }

        unsafe fn add_loaded_images(ret: &mut Vec<Library>) {
            let snap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, 0);
            if snap == INVALID_HANDLE_VALUE {
                return;
            }

            let mut me = MaybeUninit::<MODULEENTRY32W>::zeroed().assume_init();
            me.dwSize = mem::size_of_val(&me) as DWORD;
            if Module32FirstW(snap, &mut me) == TRUE {
                loop {
                    if let Some(lib) = load_library(&me) {
                        ret.push(lib);
                    }

                    if Module32NextW(snap, &mut me) != TRUE {
                        break;
                    }
                }

            }

            CloseHandle(snap);
        }

        unsafe fn load_library(me: &MODULEENTRY32W) -> Option<Library> {
            let pos = me
                .szExePath
                .iter()
                .position(|i| *i == 0)
                .unwrap_or(me.szExePath.len());
            let name = OsString::from_wide(&me.szExePath[..pos]);

            // MinGW libraries currently don't support ASLR
            // (rust-lang/rust#16514), but DLLs can still be relocated around in
            // the address space. It appears that addresses in debug info are
            // all as-if this library was loaded at its "image base", which is a
            // field in its COFF file headers. Since this is what debuginfo
            // seems to list we parse the symbol table and store addresses as if
            // the library was loaded at "image base" as well.
            //
            // The library may not be loaded at "image base", however.
            // (presumably something else may be loaded there?) This is where
            // the `bias` field comes into play, and we need to figure out the
            // value of `bias` here. Unfortunately though it's not clear how to
            // acquire this from a loaded module. What we do have, however, is
            // the actual load address (`modBaseAddr`).
            //
            // As a bit of a cop-out for now we mmap the file, read the file
            // header information, then drop the mmap. This is wasteful because
            // we'll probably reopen the mmap later, but this should work well
            // enough for now.
            //
            // Once we have the `image_base` (desired load location) and the
            // `base_addr` (actual load location) we can fill in the `bias`
            // (difference between the actual and desired) and then the stated
            // address of each segment is the `image_base` since that's what the
            // file says.
            //
            // For now it appears that unlike ELF/MachO we can make do with one
            // segment per library, using `modBaseSize` as the whole size.
            let mmap = mmap(name.as_ref())?;
            let image_base = coff::get_image_base(&mmap)?;
            let base_addr = me.modBaseAddr as usize;
            Some(Library {
                name,
                bias: base_addr.wrapping_sub(image_base),
                segments: vec![LibrarySegment {
                    stated_virtual_memory_address: image_base,
                    len: me.modBaseSize as usize,
                }],
            })
        }
    } else if #[cfg(target_os = "macos")] {
        // macOS uses the Mach-O file format and uses DYLD-specific APIs to
        // load a list of native libraries that are part of the appplication.

        use std::os::unix::prelude::*;
        use std::ffi::{OsStr, CStr};

        mod macho;
        use self::macho::Object;

        #[allow(deprecated)]
        fn native_libraries() -> Vec<Library> {
            let mut ret = Vec::new();
            let images = unsafe { libc::_dyld_image_count() };
            for i in 0..images {
                ret.extend(native_library(i));
            }
            return ret;
        }

        #[allow(deprecated)]
        fn native_library(i: u32) -> Option<Library> {
            use object::macho;
            use object::read::macho::{MachHeader, Segment};
            use object::{Bytes, NativeEndian};

            // Fetch the name of this library which corresponds to the path of
            // where to load it as well.
            let name = unsafe {
                let name = libc::_dyld_get_image_name(i);
                if name.is_null() {
                    return None;
                }
                CStr::from_ptr(name)
            };

            // Load the image header of this library and delegate to `object` to
            // parse all the load commands so we can figure out all the segments
            // involved here.
            let (mut load_commands, endian) = unsafe {
                let header = libc::_dyld_get_image_header(i);
                if header.is_null() {
                    return None;
                }
                match (*header).magic {
                    macho::MH_MAGIC => {
                        let endian = NativeEndian;
                        let header = &*(header as *const macho::MachHeader32<NativeEndian>);
                        let data = core::slice::from_raw_parts(
                            header as *const _ as *const u8,
                            mem::size_of_val(header) + header.sizeofcmds.get(endian) as usize
                        );
                        (header.load_commands(endian, Bytes(data)).ok()?, endian)
                    }
                    macho::MH_MAGIC_64 => {
                        let endian = NativeEndian;
                        let header = &*(header as *const macho::MachHeader64<NativeEndian>);
                        let data = core::slice::from_raw_parts(
                            header as *const _ as *const u8,
                            mem::size_of_val(header) + header.sizeofcmds.get(endian) as usize
                        );
                        (header.load_commands(endian, Bytes(data)).ok()?, endian)
                    }
                    _ => return None,
                }
            };

            // Iterate over the segments and register known regions for segments
            // that we find. Additionally record information bout text segments
            // for processing later, see comments below.
            let mut segments = Vec::new();
            let mut first_text = 0;
            let mut text_fileoff_zero = false;
            while let Some(cmd) = load_commands.next().ok()? {
                if let Some((seg, _)) = cmd.segment_32().ok()? {
                    if seg.name() == b"__TEXT" {
                        first_text = segments.len();
                        if seg.fileoff(endian) == 0 && seg.filesize(endian) > 0 {
                            text_fileoff_zero = true;
                        }
                    }
                    segments.push(LibrarySegment {
                        len: seg.vmsize(endian).try_into().ok()?,
                        stated_virtual_memory_address: seg.vmaddr(endian).try_into().ok()?,
                    });
                }
                if let Some((seg, _)) = cmd.segment_64().ok()? {
                    if seg.name() == b"__TEXT" {
                        first_text = segments.len();
                        if seg.fileoff(endian) == 0 && seg.filesize(endian) > 0 {
                            text_fileoff_zero = true;
                        }
                    }
                    segments.push(LibrarySegment {
                        len: seg.vmsize(endian).try_into().ok()?,
                        stated_virtual_memory_address: seg.vmaddr(endian).try_into().ok()?,
                    });
                }
            }

            // Determine the "slide" for this library which ends up being the
            // bias we use to figure out where in memory objects are loaded.
            // This is a bit of a weird computation though and is the result of
            // trying a few things in the wild and seeing what sticks.
            //
            // The general idea is that the `bias` plus a segment's
            // `stated_virtual_memory_address` is going to be where in the
            // actual address space the segment resides. The other thing we rely
            // on though is that a real address minus the `bias` is the index to
            // look up in the symbol table and debuginfo.
            //
            // It turns out, though, that for system loaded libraries these
            // calculations are incorrect. For native executables, however, it
            // appears correct. Lifting some logic from LLDB's source it has
            // some special-casing for the first `__TEXT` section loaded from
            // file offset 0 with a nonzero size. For whatever reason when this
            // is present it appears to mean that the symbol table is relative
            // to just the vmaddr slide for the library. If it's *not* present
            // then the symbol table is relative to the the vmaddr slide plus
            // the segment's stated address.
            //
            // To handle this situation if we *don't* find a text section at
            // file offset zero then we increase the bias by the first text
            // sections's stated address and decrease all stated addresses by
            // that amount as well. That way the symbol table is always appears
            // relative to the library's bias amount. This appears to have the
            // right results for symbolizing via the symbol table.
            //
            // Honestly I'm not entirely sure whether this is right or if
            // there's something else that should indicate how to do this. For
            // now though this seems to work well enough (?) and we should
            // always be able to tweak this over time if necessary.
            //
            // For some more information see #318
            let mut slide = unsafe { libc::_dyld_get_image_vmaddr_slide(i) as usize };
            if !text_fileoff_zero {
                let adjust = segments[first_text].stated_virtual_memory_address;
                for segment in segments.iter_mut() {
                    segment.stated_virtual_memory_address -= adjust;
                }
                slide += adjust;
            }

            Some(Library {
                name: OsStr::from_bytes(name.to_bytes()).to_owned(),
                segments,
                bias: slide,
            })
        }
    } else if #[cfg(any(
        target_os = "linux",
        target_os = "fuchsia",
    ))] {
        // Other Unix (e.g. Linux) platforms use ELF as an object file format
        // and typically implement an API called `dl_iterate_phdr` to load
        // native libraries.

        use std::os::unix::prelude::*;
        use std::ffi::{OsStr, CStr};

        mod elf;
        use self::elf::Object;

        fn native_libraries() -> Vec<Library> {
            let mut ret = Vec::new();
            unsafe {
                libc::dl_iterate_phdr(Some(callback), &mut ret as *mut _ as *mut _);
            }
            return ret;
        }

        unsafe extern "C" fn callback(
            info: *mut libc::dl_phdr_info,
            _size: libc::size_t,
            vec: *mut libc::c_void,
        ) -> libc::c_int {
            let libs = &mut *(vec as *mut Vec<Library>);
            let name = if (*info).dlpi_name.is_null() || *(*info).dlpi_name == 0{
                if libs.is_empty() {
                    std::env::current_exe().map(|e| e.into()).unwrap_or_default()
                } else {
                    OsString::new()
                }
            } else {
                let bytes = CStr::from_ptr((*info).dlpi_name).to_bytes();
                OsStr::from_bytes(bytes).to_owned()
            };
            let headers = core::slice::from_raw_parts((*info).dlpi_phdr, (*info).dlpi_phnum as usize);
            libs.push(Library {
                name,
                segments: headers
                    .iter()
                    .map(|header| LibrarySegment {
                        len: (*header).p_memsz as usize,
                        stated_virtual_memory_address: (*header).p_vaddr as usize,
                    })
                    .collect(),
                bias: (*info).dlpi_addr as usize,
            });
            0
        }
    } else {
        // Everything else should use ELF, but doesn't know how to load native
        // libraries.

        mod elf;
        use self::elf::Object;

        fn native_libraries() -> Vec<Library> {
            Vec::new()
        }
    }
}

#[derive(Default)]
struct Cache {
    /// All known shared libraries that have been loaded.
    libraries: Vec<Library>,

    /// Mappings cache where we retain parsed dwarf information.
    ///
    /// This list has a fixed capacity for its entire liftime which never
    /// increases. The `usize` element of each pair is an index into `libraries`
    /// above where `usize::max_value()` represents the current executable. The
    /// `Mapping` is corresponding parsed dwarf information.
    ///
    /// Note that this is basically an LRU cache and we'll be shifting things
    /// around in here as we symbolize addresses.
    mappings: Vec<(usize, Mapping)>,
}

struct Library {
    name: OsString,
    /// Segments of this library loaded into memory, and where they're loaded.
    segments: Vec<LibrarySegment>,
    /// The "bias" of this library, typically where it's loaded into memory.
    /// This value is added to each segment's stated address to get the actual
    /// virtual memory address that the segment is loaded into. Additionally
    /// this bias is subtracted from real virtual memory addresses to index into
    /// debuginfo and the symbol table.
    bias: usize,
}

struct LibrarySegment {
    /// The stated address of this segment in the object file. This is not
    /// actually where the segment is loaded, but rather this address plus the
    /// containing library's `bias` is where to find it.
    stated_virtual_memory_address: usize,
    /// The size of ths segment in memory.
    len: usize,
}

// unsafe because this is required to be externally synchronized
pub unsafe fn clear_symbol_cache() {
    Cache::with_global(|cache| cache.mappings.clear());
}

impl Cache {
    fn new() -> Cache {
        Cache {
            mappings: Vec::with_capacity(MAPPINGS_CACHE_SIZE),
            libraries: native_libraries(),
        }
    }

    // unsafe because this is required to be externally synchronized
    unsafe fn with_global(f: impl FnOnce(&mut Self)) {
        // A very small, very simple LRU cache for debug info mappings.
        //
        // The hit rate should be very high, since the typical stack doesn't cross
        // between many shared libraries.
        //
        // The `addr2line::Context` structures are pretty expensive to create. Its
        // cost is expected to be amortized by subsequent `locate` queries, which
        // leverage the structures built when constructing `addr2line::Context`s to
        // get nice speedups. If we didn't have this cache, that amortization would
        // never happen, and symbolicating backtraces would be ssssllllooooowwww.
        static mut MAPPINGS_CACHE: Option<Cache> = None;

        f(MAPPINGS_CACHE.get_or_insert_with(|| Cache::new()))
    }

    fn avma_to_svma(&self, addr: *const u8) -> Option<(usize, *const u8)> {
        self.libraries
            .iter()
            .enumerate()
            .filter_map(|(i, lib)| {
                // First up, test if this `lib` has any segment containing the
                // `addr` (handling relocation). If this check passes then we
                // can continue below and actually translate the address.
                //
                // Note that we're using `wrapping_add` here to avoid overflow
                // checks. It's been seen in the wild that the SVMA + bias
                // computation overflows. It seems a bit odd that would happen
                // but there's not a huge amount we can do about it other than
                // probably just ignore those segments since they're likely
                // pointing off into space. This originally came up in
                // rust-lang/backtrace-rs#329.
                if !lib.segments.iter().any(|s| {
                    let svma = s.stated_virtual_memory_address;
                    let start = svma.wrapping_add(lib.bias);
                    let end = start.wrapping_add(s.len);
                    let address = addr as usize;
                    start <= address && address < end
                }) {
                    return None;
                }

                // Now that we know `lib` contains `addr`, we can offset with
                // the bias to find the stated virutal memory address.
                let svma = (addr as usize).wrapping_sub(lib.bias);
                Some((i, svma as *const u8))
            })
            .next()
    }

    fn mapping_for_lib<'a>(&'a mut self, lib: usize) -> Option<&'a Context<'a>> {
        let idx = self.mappings.iter().position(|(idx, _)| *idx == lib);

        // Invariant: after this conditional completes without early returning
        // from an error, the cache entry for this path is at index 0.

        if let Some(idx) = idx {
            // When the mapping is already in the cache, move it to the front.
            if idx != 0 {
                let entry = self.mappings.remove(idx);
                self.mappings.insert(0, entry);
            }
        } else {
            // When the mapping is not in the cache, create a new mapping,
            // insert it into the front of the cache, and evict the oldest cache
            // entry if necessary.
            let name = &self.libraries[lib].name;
            let mapping = Mapping::new(name.as_ref())?;

            if self.mappings.len() == MAPPINGS_CACHE_SIZE {
                self.mappings.pop();
            }

            self.mappings.insert(0, (lib, mapping));
        }

        let cx: &'a Context<'static> = &self.mappings[0].1.cx;
        // don't leak the `'static` lifetime, make sure it's scoped to just
        // ourselves
        Some(unsafe { mem::transmute::<&'a Context<'static>, &'a Context<'a>>(cx) })
    }
}

pub unsafe fn resolve(what: ResolveWhat<'_>, cb: &mut dyn FnMut(&super::Symbol)) {
    let addr = what.address_or_ip();
    let mut call = |sym: Symbol<'_>| {
        // Extend the lifetime of `sym` to `'static` since we are unfortunately
        // required to here, but it's ony ever going out as a reference so no
        // reference to it should be persisted beyond this frame anyway.
        let sym = mem::transmute::<Symbol<'_>, Symbol<'static>>(sym);
        (cb)(&super::Symbol { inner: sym });
    };

    Cache::with_global(|cache| {
        let (lib, addr) = match cache.avma_to_svma(addr as *const u8) {
            Some(pair) => pair,
            None => return,
        };

        // Finally, get a cached mapping or create a new mapping for this file, and
        // evaluate the DWARF info to find the file/line/name for this address.
        let cx = match cache.mapping_for_lib(lib) {
            Some(cx) => cx,
            None => return,
        };
        let mut any_frames = false;
        if let Ok(mut frames) = cx.dwarf.find_frames(addr as u64) {
            while let Ok(Some(frame)) = frames.next() {
                any_frames = true;
                call(Symbol::Frame {
                    addr: addr as *mut c_void,
                    location: frame.location,
                    name: frame.function.map(|f| f.name.slice()),
                });
            }
        }

        if !any_frames {
            if let Some(name) = cx.object.search_symtab(addr as u64) {
                call(Symbol::Symtab {
                    addr: addr as *mut c_void,
                    name,
                });
            }
        }
    });
}

pub enum Symbol<'a> {
    /// We were able to locate frame information for this symbol, and
    /// `addr2line`'s frame internally has all the nitty gritty details.
    Frame {
        addr: *mut c_void,
        location: Option<addr2line::Location<'a>>,
        name: Option<&'a [u8]>,
    },
    /// Couldn't find debug information, but we found it in the symbol table of
    /// the elf executable.
    Symtab { addr: *mut c_void, name: &'a [u8] },
}

impl Symbol<'_> {
    pub fn name(&self) -> Option<SymbolName<'_>> {
        match self {
            Symbol::Frame { name, .. } => {
                let name = name.as_ref()?;
                Some(SymbolName::new(name))
            }
            Symbol::Symtab { name, .. } => Some(SymbolName::new(name)),
        }
    }

    pub fn addr(&self) -> Option<*mut c_void> {
        match self {
            Symbol::Frame { addr, .. } => Some(*addr),
            Symbol::Symtab { .. } => None,
        }
    }

    pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
        match self {
            Symbol::Frame { location, .. } => {
                let file = location.as_ref()?.file?;
                Some(BytesOrWideString::Bytes(file.as_bytes()))
            }
            Symbol::Symtab { .. } => None,
        }
    }

    pub fn filename(&self) -> Option<&Path> {
        match self {
            Symbol::Frame { location, .. } => {
                let file = location.as_ref()?.file?;
                Some(Path::new(file))
            }
            Symbol::Symtab { .. } => None,
        }
    }

    pub fn lineno(&self) -> Option<u32> {
        match self {
            Symbol::Frame { location, .. } => location.as_ref()?.line,
            Symbol::Symtab { .. } => None,
        }
    }
}